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Universal level dynamics of complex systems

Pragya Shukla*
Department of Physics, Indian Institute of Science, Bangalore 560012, India

~Received 16 April 1998!

We study the evolution of the distribution of eigenvalues of aN3N matrix subject to a random perturbation
drawn from~i! a generalized Gaussian ensemble and~ii ! a non-Gaussian ensemble with a measure variable
under the change of basis. It turns out that, in case~i!, a redefiniton of the parameter governing the evolution
leads to a Fokker-Planck equation similar to the one obtained when the perturbation is taken from a standard
Gaussian ensemble~with invaraiant measure!. This equivalence can therefore help us to obtain the correlations
for various physically significant cases modeled by generalized Gaussian ensembles by using the already
known correlations for standard Gaussian ensembles. For largeN values, our results for both cases~i! and~ii !
are similar to those obtained for the Wigner-Dyson gas as well as for the perturbation taken from a standard
Gaussian ensemble. This seems to suggest the independence of evolution, in the thermodynamic limit, from the
nature of perturbation involved as well as the initial conditions and therefore the universality of dynamics of
the eigenvalues of complex systems.@S1063-651X~99!04404-9#

PACS number~s!: 05.45.2a, 03.65.Sq, 05.40.2a
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I. INTRODUCTION

Many important physical properties of complex quantu
systems can be studied by analyzing the statistical resp
of eigenvalues to an external perturbation@1,2#. It turns out
that the evolution of the eigenvalues of the system as a fu
tion of the strength of the perturbation is universal but o
after an appropriate normalization of the perturbing poten
@1#. Various approches have beeen adopted for a better
derstanding of this phenomenon, e.g., nonlinears model@3#,
random matrix theory~RMT! @4#, semiclassical technique
@5#, etc. Among these, a special class of Gaussian ensem
of RMT have been used very successfully in modeling
short energy-range behavior of eigenvalues@4#. The prob-
ability density of a matrix in this ensemble depends only
the functions invariant under change of basis, e.g., trac
the matrix thus making it easier to calculate the eigenva
distribution. However, it has been conjectured that the lo
statistical properties of a few eigenvalues of a random H
mitian matrix are independent of the details of the distrib
tion of the matrix elements, apart from a few broad char
terizations such as real symmetric versus comp
Hermitian, etc.~Chap. 1 of Ref.@4#!. Therefore, the succes
of RMT in modeling the energy-level behavior of comple
systems should not be restricted only to the standard Ga
ian ensembles.

In this analytical work, we study this conjecture by exa
ining the dynamics of eigenvalues of a quantum Hamilton
under a random perturbation belonging to a class of~i! a
general Gaussian ensemble and~ii ! a non-Gaussian ensemb
with logarithm of the distribution given by a polynomial. I
both cases, the probability density of a matrix is chosen
contain the basis-dependent functions and therefore is
longer invariant under the basis transformation. By integ
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ing over all perturbations from such an ensemble, we sh
that, for large N, the probability density of eigenvalue
evolves according to a Fokker-Planck~FP! equation similar
to the one proposed by Dyson for the Wigner-Dyson gas@6#.
The strength of the perturbation acts here as a timelike c
dinate. For finiteN, this analogy seems to survive only whe
the dynamics is considered as a function of the perturba
strength as well as the variances of the matrix element
the perturbation.

The statistical response of eigenvalues to a changing
turbation was studied by Simons and co-workers@1# by using
a different approach, namely, the nonlinears model. By
considering a HamiltonianH5H01xV with V as the pertur-
bation andx its strength, they explicitly calculate the auto
correlation function of the energy eigenvalues for disorde
systems within the so-called Gaussian approximation~or
zero mode aproximation!. Other results pertain to the nu
merical study of perturbed quantum chaotic systems, suc
the chaotic billiard with a varying magnetic flux@7#. As
shown in their work, the universality manifests itself amo
the density correlators only after the normalization of eige
valuesl i by mean level spacing and that of perturbation
the root mean square ‘‘velocity’’ of eigenvalue
^(]l i /]x)2&; the universality here implies the independen
of the correlators in the bulk of a system from syste
dependent features. By treatingx as a timelike parameter
they also conjectured the asymptotic correspondence of
parametric level-density correlators of quantum chaotic s
tems with the corresponding time-dependent particle-den
correlators for the ground-state dynamics of the Sutherl
Hamiltonian@8#. The connection between the static corre
tors ~for a given parameter value! and the ground-state cor
relators~for a given time! of the Sutherland system is alread
well known @1#.

This correspondence was analytically shown in a rec
work by Narayan and Shastry@9#. They studied the evolution
of the distribution of eigenvalues of aN3N matrix H subject
to a random perturbing matrixV taken from a standard
Gaussian~SG! ensemble and showed that it leads to the
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5206 PRE 59PRAGYA SHUKLA
equation postulated by Dyson. Within this model, th
proved the equivalence between the space-time correlato
the ground-state dynamics of an integrable one-dimensi
~1D! interacting many-body quantum system@the Calogero-
Sutherland~CS! system# and the second order parametr
correlations ofH. This analogy follows because the Dyso
FP equation is equivalent, under a Wick rotation, to
quantum mechanics of the Calogero model, which, in
thermodynamic limit, has bulk properties identical to tho
of the Sutherland system@9,10#.

Our present work extends this analogy further to a m
general model of HamiltoniansH. We proceed as follows
For the clarification of our ideas, we first study, in Sec.
the distribution of eigenvaluesP(m,t) for an arbitrary initial
conditionH0 and the perturbationV taken from a generalized
Gaussian ensemble~later referred to as the GG case!. We
obtain a partial differential equation governing its evolutio
which, after certain parametric redefinitions, turns out to
formally the same as the Fokker-Planck equation govern
the evolution of the Wigner-Dyson~WD! gas. As the solu-
tion of FP equation as well as various correlations in
latter case are already known for many initial conditions, t
helps us to obtainP(m,t) as well as the correlations in th
GG case, as given in Sec. III. Section IV deals with t
evolution of eigenvalues under a more general perturbat
We are motivated to study this case because the claim a
universality of the dynamics can only be made if the equi
lence is proved, at least in the thermodynamic limit, for aV
with distribution of a more general nature. We conclude
Sec. V, which is followed by an appendix containing t
proofs of some of the results used in this paper.

II. GENERALIZED GAUSSIAN CASE

Our interest is in the evolution of eigenvalues ofH under
a random perturbationV with initial stateH0 as in Ref.@9#.
Here the bothH0 andV are Hermitian and can be assumed
have same mean spacing without any loss of generality
ensure the same mean spacing forH also, we need to modify
the parametrization of our perturbation strengthx
@9–11# from H(x)5H01xV to H(x)5H0 cos(Vx)
1VV21 sin(Vx) with V}1/AN. SinceV→0 for largeN, the
reparametrization of the perturbation strength is incon
quential for finitex. The distributionr(V) of matrix V is still
chosen to be a Gaussian,r(V)5C exp(2(k< laklVkl

2 ) with
C as the normalization constant. So far we are in the sa
situation as in Ref.@9# but now we depart and allow th
variances for diagonal and off-diagonal matrix elements
be arbitrary~later referred to as the GG case! unlike the SG
case where variance of the diagonal ones was twice tha
the off-diagonal ones.

As indicated in@9#, the evolution of eigenvalues ofH as a
function ofx for any perturbationV can be expressed as a s
of first order differential equations. They turn out to b
analogous to the equations of motion of a classically in
grable system with 2N1bN(N21)/2 degrees of freedom
~with b a symmetry-dependent parameter!. In principle, the
distribution of eigenvalues can be obtained from these eq
tions and its evolution can be studied but the coupling
tween the equations makes such a method very diffic
Thus we adopt another approach, the one used in@10# for
of
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studying the symmetric Gaussian case. As shown in@9,10#,
the proper form of FP equation can be achieved only afte
further reparametrization, namely,t52V22 ln cos(Vx)
and by studying the evolution in terms oft. This suggests to
us the use of the same parametrization for our case a
which gives

H~t!5H0f h1VhV21 ~1!

with h5A12e22V2t and f h5e2V2t.
Given an ensemble of the matricesV distributed with a

probability densityr(V) in the Hermitian matrix space, le
P(m,t) be the probability of finding eigenvaluesl i@V# of H
betweenm i andm i1dm i at ‘‘time’’ t for an arbitrarily cho-
senH0, which can be expressed as follows:

P~m i ,t!5E )
i 51

N

d~m i2l i@V# !r~V!dV. ~2!

Note here thatP(m,t) is in fact the conditional probability
P(m,tum0) with m0 as the eigenvalue matrix ofH0 but for
simplification we use the former notation. As thet depen-
dence ofP in Eq. ~2! enters only throughl i , a derivative of
P with respect tot can be written as follows@10#:

]P~m i ,t!

]t
52 (

n51

N E )
i 51Þn

N

d~m i2l i !

3
]d~mn2ln!

]mn

]ln

]t
r~V!dV. ~3!

The further treatment of the above equation depends
the symmetry classes of the matricesV and H, that is,
whether they are real-symmetric or complex Hermitian.

In the real-symmetric case,]ln /]t can be expressed in
terms of the matrix elements of the orthogonal matrixO,
which diagonalizesH, H5OTLO with L as the eigenvalue
matrix ~Appendix A!. Using this in Eq.~3! leads to the fol-
lowing form with gkl5(11dkl),

]P~m i ,t!

]t
5V2(

n

]

]mn
~mnP!22h21V(

n

]

]mn

3E )
i

d~m i2l i !(
k< l

OnkOnl

Vlk

gkl
r~V!dV.

~4!

An application of the partial integration on the seco
term in the right of the above equation then gives

]P~m i ,t!

]t
5V2(

n

]

]mn
~mnP!2h21V(

n

]

]mn

3E (
k< l

1

aklgkl

]

]Vkl
F)

i
d~m i2l i !OnkOnlG

3r~V!dV. ~5!

For simplification let us assume the same variance for
the diagonal matrix elements such thatgklakl5a for k5 l .
Now, by expressing (k< l(1/aklgkl)•••51/a (k< l•••
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2(k,l@(1/a)2(1/gklakl)# and with the help of real-
symmetric analog of relations~A3!–~A8! as well as the par-
tial integration technique, we can reduce Eq.~5! as follows:

]P~m i ,t!

]t
5V2(

n

]

]mn
~mnP!1

V

ha(
n

]

]mn
(
m

]

]mm

3E )
i

d~m i2l i !(
k< l

F ]lm

]Vkl
OnkOnlGr~V!dV

1
1

a (
n,m,nÞm

]

]mn
E )

i
d~m i2l i !

r~V!

lm2ln
dV

2h21V(
k, l

~gkl
21akl

212a21!(
n

]

]mn

3E F ]

]Vkl
S)

i
d~m i2l i !OnkOnlD Gr~V!dV.

~6!

By applying the orthogonality relation of matrixO, Eq.
~6! can now be rewritten as follows:

]P~m i ,t!

]t
5V2(

n

]

]mn
~mnP!

1
1

a(
n

]

]mn
F ]

]mn
1 (

mÞn

b

mm2mn
GP2F,

~7!

whereb51 and

F5h22V2(
k, l

~gkl
21akl

212a21!E )
i

d~m i2l i !

3@akl22akl
2 Vkl

2 #r~V!dV. ~8!

Following similar steps and the appropriate relatio
given in the Appendix, one obtains the same equation a
the complex Hermitian case~with b52). Further analysis of
Eq. ~7! depends on the relative values of variances for
off-diagonal matrix elements. For a clear understanding,
us first consider a case where all the off-diagonals have
same variances, such thatgklakl5a8 ~for kÞ l ). F can then
be expressed in terms of the derivative ofP with respect to
y[a8/a:

F52h22V2~12y!y
]P

]y
. ~9!

Here we have used an idea quite important to our anal
that the variances of the matrix elements ofV can also vary
and therefore eigenvalues evolve not only as a function
the perturbation strength but of the variances too. Note h
that F can also be expressed as an extra drift te
„F5(n$@]R(m)#/]mn%…, with R5h21V(k< l(gkl

21akl
21

2a21)*$(]/]Vkl)@) id(m i2l i)OnkOnl#%r(V)dV and it can
be of interest to study the effect of this extra drift on t
dynamics. For example, forR nonlinear inP, the motion may
lose its random behavior, showing some sort of periodic
But in this paper, we restrict ourselves just to exploring
s
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universality of the dynamics, that is, to verifying thatP sat-
isfies a FP equation similar to the one proposed by Dyso

Equation~7! contains the derivatives ofP with respect to
two parameters, namely,t andy. In order to prove that the
statistical quantities in the GG case evolve in a similar w
as in the SG case, one should be able to reduce the
parameter dependence of Eq.~7! to a single-parameter de
pendence. We assume that it is possible along a curve
rametrized byf,t5t(f),y5y(f) such that

]

]f
5

]t

]f

]

]t
1

]y

]f

]

]y
. ~10!

A comparison of Eq.~10! with Eq. ~7! then leads us to the
conditions for existence of such a curve, namely,]t/]f
51 and]y/]f5@2V2y(12y)#/h2. By solving these equa
tions, one obtains the following curve in the (y,t) space:

y5
e2V2t21

e2V2t1y0

and t5f1t0 , ~11!

wheret0 andy0 are arbitrary constants. Note that the con
tions mentioned above do not impose any constraints
these constants except that the curve should remain on
positive side of the upper half ofy-t plane. The extraction of
t0 from Eq. ~11! leads to the following form off:

f5t2
1

2V2 lnF11d
uy21u

y
~e2V2t21!G , ~12!

whered5y0 /(y021) and can be chosen as unity~since the
corresponding value off still satisfies the required condi
tions!. Thus, fory5a8/a, Eq.~11! represents a set of curve
along which Eq.~7! adopts the form of a FP equation:

]P~m i ,f!

]f
5V2(

n

]

]mn
~mnP!

1
1

a(
n

]

]mn
F ]

]mn
1 (

mÞn

b

mm2mn
GP,

~13!

where the steady state is achieved forf→` which corre-
sponds tot→` and a→a8; the steady-state solution i

given by ) i , j um i2m j ube2(a/2)V2(kmk
2
. Note that only t

→` ~with ]P/]t50) no longer represents the steady st
as in the SG or WD case but represents a transition state
f(y)52(1/2V2)ln@d(uy21u/y)#.

The steady-state limit ofP at (y,t)5(1,̀ ) seems to in-
dicate that if the initial perturbation is such that the wid
(}1/a) of the eigenfunctions ofH is smaller than the over
lapping between them (}1/a8), they have a tendency to
overcome this difference and extend over all of the availa
Hilbert space. This also seems to suggest that a complic
interaction giving rise to larger transition probabilities b
tween energy levels as compared to the probability of stay
in the same level can only be transient in nature. Given
freedom to change, it rearranges itself in such a way a
equalize these probabilities.
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Equation ~13! is formally the same as the FP equati
governing the Brownian motion of particles, in time, of th
Wigner-Dyson gas. However, in the former case, the tra
tion parameterf is a function of both perturbation streng
and the relative variances of matrix elements. In the lim
N→`, this two-parameter dependence off reduces to one
(lim N→`, f5t). This can also be seen directly from Eq
~7! and ~8! because in the limitN→`, V→0 andH→H0

1tA2V, thus removing anyV dependence ofl i and mak-
ing F→0. A same result for SG-type perturbation has
ready been obtained@9#. The analogous behavior in both G
and SG case can be attributed to the negligible effect of
distribution ofN-diagonal matrix elements on the dynami
in the presence ofN(N21)/2 off-diagonal ones. This indi
cates that, in the thermodynamic limit, differences in t
variances do not affect the evolution of eigenvalues.

Again, in theN→` limit, all three distributions, namely
SG, GG, and WD, evolve in the same way for arbitrary i
tial conditions. Thus, all moments of the eigenvalues in
and GG cases at any value of the transition parameter wi
equal to the corresponding moments of particle positions
WD gas undergoing Brownian motion due to the presenc
thermal noise. However, as discussed in@9#, this does not
imply a Brownian motion of eigenvalues for the first tw
cases, the reason being the difference of sources random
the motion of eigenvalues. For SG and GG cases, the so
is the matrixV, acting like a quenched disorder while, for th
WD gas, the thermal noise gives rise to an annealed rand
ness. Although these different origins of randomness do
affect the static~for one-parameter value! or the second-
order parametric correlations, as shown in Ref.@9#, multiple
parametric correlations higher than the second order are
ferent for the perturbed systems and WD gas. However,
origin of randomness being similar for the SG and GG cas
all the conclusions obtained for the correlations for t
former @9# are also valid for the latter in the thermodynam
limit.

It is interesting to note that Eq.~4! can also be written in
the following form@by first using the real-symmetric analo
of Eq. ~A3! in Eq. ~4! and then taking the derivative wit
respect tomn inside the integral#:

]P~m i ,t!

]t
5V2(

n

]

]mn
~mnP!1h22V2(

k< l

3E
])

i
d~m i2l i !

]Vkl
Vklr~V!dV. ~14!

Now an application of the partial integration to the seco
term on the right-hand side of this equation gives

E
])

i
d~m i2l i !

]Vkl
Vklr~V!dV

5E )
i

d~m i2l i !@112aklVkl
2 #r~V!dV.

~15!
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By expressing this in terms of the derivatives ofP with
respect toa,a8 as before, we obtain a drift equation~without
a diffusion term as well as the repulsive pairwise potenti!

]P~m i ,t!

]f1
5V2(

n

]

]mn
~mnP!, ~16!

wheref1 describes a curve in a three-dimensional (y,a,a8)
space such that]P/]f15(]P/]t)1(2V2/h2)@a8(]P/
]a8)1a(]P/]a)#. The above possibility of reduction of th
FP equation in a pure drift form, just by going to a high
parametric space, implies the total blindness of eigenva
to any mutually repulsive potential or locally fluctuatin
force in this space. Note that it is already well known tha
repulsion between the eigenvalues vanishes if the numbe
parameters of the Hamiltonian undergoing variation is m
than one in the real-symmetric case~two for the complex-
Hermitian case! @11#. However, the same situation seems
prevail even when the parameters undergoing variation
the ones governing the distribution of matrix elements
Hamiltonians.

So far, we have considered the case where all the
diagonal matrix elementsVi j have the same variance a
though different from that of the diagonal. But in man
physical situations, e.g., in disordered systems, there oc
localization of eigenfunctions that may give rise to o
diagonal elements with different variances. One such sit
tion most often encountered is whereVi j ’s decay exponen-
tially with respect to the distance from the diagonal. It can
modeled by taking different variances for the different o
diagonals, that is,gklakl5a r (r 5uk2 l u). F in such a case
is given by, withyr[a r /a,

F52h22V2(
r 51

N

~12yr !yr

]P

]yr
. ~17!

We assume that it is possible along a curve parametr
by f, t5t(f),Y5Y(y1 , . . . ,yN) such that

]

]f
5

]t

]f

]

]t
1

]Y

]f

]

]Y
~18!

with ]/]Y5( r(]yr /]Y)(]/]yr). Reasoning again as befor
one finds that the universality of evolution of the probabil
density still survives but only by going to a highe
(N-dimensional! parametric space (t,y1 , . . . ,yN), along a
set of curves parametrized byf and given by the conditions
(]t/]f)51; (]Y/]f)52h22V2 with (]yr /]Y)5(1
2yr)yr . Again, f can be obtained by solving these equ
tions:

f5t2
1

2V2 lnF11d)
r 51

N S uyr21u
yr

D ~e2V2t21!G . ~19!

Note here that) r contains the contribution only from thos
yr ’s for which yr21Þ0.

One can also consider a physical situation when all
off-diagonal matrix elements have different probability law
gklakl5a(for k5 l ) andaklÞa i j if ( klÞ i j ). In this case,F
now turns out to be as follows withykl[akl /a:
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F52h22V2(
k, l

~12ykl!ykl

]P

]ykl
. ~20!

Now one has to go to$@N(N21)#/2%11-dimensional
parametric space to recover the FP equation similar to tha
the Wigner-Dyson gas. The curves in this case are ag
parametrized byf, which is still related tot and Y by Eq.
~18! but now Y[Y($ykl%) is such that ]/]Y
5(k, l(]ykl /]Y)(]/
]ykl) with ]ykl /]Y5(12ykl)ykl ; the two other derivatives
of t andY with respect tof remain the same as in the abo
case. Proceeding exactly as before,f in this case can be
shown to be the following:

f5t2
1

2V2 lnF11d)
k, l

N S uykl21u
ykl

D ~e2V2t21!G . ~21!

Again, as before,)k, l contains contributions from allykl
Þ1. We have discussed here very few of the various po
bilities one may encounter in complex systems. As indica
by the cases discussed above, the desired form of Eq.~13!
can only be obtained by an appropriate partitioning of
sums@e.g., as done near Eq.~6!#, which leads to a separatio
of the contributions from terms with unequal variances fro
those with equal variances. The latter gives the required d
and diffusion terms while the former is absorbed in a pa
metric derivative~given byF). Using the same technique,F
can be written for other cases too.

For the SG case,f appearing in the correlators of the typ
^d(E,f),d(E,0)& involves variation of just one paramete
for the CG case two parameters or more. However, in b
cases, the expressions of second-order correlators is the
due to the analogous form of the FP equation. Our st
therefore suggests that the second-order correlators invol
variation of more than one parameter can always be
pressed as those involving just one effective parameter.
example, the correlators belonging to the RM models of b
localized as well as delocalized cases can be expressed i
same form by using parameterf although the definition off
is different in the two cases.

Our study also suggests that the nature of the dynamic
the eigenvalues is very sensitive to the number of parame
undergoing a change. For finiteN, the motion may appear a
pure drift, suggesting no interaction between eigenvalues
a total absence of local fluctuating and frictional forces
variances of all the matrix elements are allowed to vary
dependently. It seems to be Brownian as a function of
the relative variations of the variance. Under variation
only the perturbation parameter, the presence of an e
driftlike term makes the motion non-Brownian. But, the co
tribution of this term being zero in theN→` limit, it recov-
ers its Brownian nature. It can be of interest to study
effect of this extra drift on the dynamics.

Although the study presented here deals with the ene
level dynamics of random matrix-models of Hermitian o
erators, e.g., the Hamiltonian of complex systems, the res
are also valid for the level dynamics of unitary operatorsU,
e.g., the time-evolution operator being perturbed by a r
dom matrix V taken from the GG ensembles,$U(t)
of
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5U0 exp@ iAtV#'U0@11 iAtV# for smallt values%. The re-
quired FP equation in this case turns out to be the followi

]P~m i ,f!

]f
5

1

a(
n

]

]mn
F ]

]mn
1

b

2 (
mÞn

cotS mm2mn

2 D GP,

~22!

with f defined as before. To prove the equivalence forU a
symmetric unitary matrix (b51), one has to follow steps
similar to those in the real-symmetric case of Hermitian m
trices, as both are invariant under orthogonal transformat
For a general unitaryU (b52), the steps are similar to th
complex Hermitian case. As is obious from Eq.~22!, this is
similar to the FP equation obtained ifV belongs to the SG
ensembles@12#.

III. CALCULATION OF P„µ,t… AND CORRELATIONS

In the preceding section, we obtained a FP equation g
erning the evolution of probabilityP(m,t) for an arbitrarily
given H(f0) ~the conditional probability!. Here f0 corre-
sponds to the caset50 and andH(f0) can be obtained by
using the relation H(f)5H(f0)e2V2(f2f0)

1V̂A12e22V2(f2f0), substitutingf in terms of t and y
there and then comparing it with the expression for
HamiltonianH(t) given by Eq.~1!. HereV̂ is a matrix with
an invariant probability distribution@r(V̂)}e2(a/2)Tr V̂2

# and
H(f) can be written in the above form~the ‘‘SG form’’!
since it gives the correct evolution equation for the proba
ity distribution.

The formal similarity of the FP equation to that of th
WD gas case as well as the SG case makes it easier to o
P(m,t) at least forb52, since the solution of Eq.~13! @and
~22!# for this b value is already known@4,12#. The P(m,f)
@and thereforeP(m,t)] can also be calculated directly from
the HamiltonianH(f) by using the sum of the matrices tec
nique~that is, by evaluating a two-matrix integral! as for the
SG case@4# because now both of the component matric
have invariant distribution, unlike Eq.~1!. For completeness
we give here a few of the steps, used in solving the SG c
for our case; for details, refer to@12#.

As can readily be checked, both Eqs.~13! and ~22! can
also be written as follows~with a51 for simplification!:

]P~m i ,f!

]f
5(

n

]

]mn
uQNub

]

]mn

P

uQNub
, ~23!

where uQNub5uD(m)ube2V2(kmk
2

with D(m)5) i , j (m i
2m j ) for the Hermitian case and5) j ,ksin@(m j2mk)/2# for
the unitary case. The transformationC5P/uQNub/2 allows us
to cast Eq.~23! in the suggestive form

]C

]f
52ĤC, ~24!

where, for the Hermitian case, the ‘‘Hamiltonian’’Ĥ turns
out to be the Calogero-Moser~CM! Hamiltonian

Ĥ5(
i

]2

]m i
22

1

2(i , j

b~b22!

~m i2m j !
2 1

V4

4 (
i

m i
2 . ~25!
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Similarly, for the unitary case,Ĥ is the Calogero-Sutherlan
Hamiltonian

Ĥ52(
i

]2

]m i
21

b~b22!

16 (
iÞ j

cosec2~m i2m j !

2
b2

48
N~N221!. ~26!

With the parabolic-confining potential~or periodic bound-
ary conditions! and under the requirement~to take into ac-
count the singularity inH) that the solutions vanish asum i

2m j ub/2 whenm i andm j are close to each other,Ĥ, in both
Eqs.~25! and~26!, has well-defined~completely symmetric!
eigenstateszk and eigenvalueslk . This allows us to expres
the ‘‘state’’ C and thereforeP(m,fuH0) as a sum over ei-
genvalues and eigenfunctions ofĤ,

P„m,fuH~f0!…5U QN~m!

QN~m0!
Ub/2

3 (
k.0

exp@2lk~f2f0!#zk~m!zk* ~m0!,

~27!

where m0[(m01,m02, . . . ,m0N) are the eigenvalues o
H(f0). The joint probability distributionP(m,f) can then
be obtained by integrating over all initial conditions,

P~m,f!5E P~m,fum0 ,f0!P~m0 ,f0!dm0 , ~28!

which further leads to the correlationsRn(m1 , . . . ,mn ;f)
5$N!/ @(N2n)! #*dmn11 . . . dmNP(m1 , . . . ,mN ;f) using
standard techniques@12,13#. In fact, a direct integration
of the FP equation ~13! leads to the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchic relations amon
the unfolded correlators Rn(r 1 , . . . ,r n ;L)5 lim N
→`@Rn(m1 , . . . ,mn ;f)#/R1(m1 ;f) . . . R1(mn ;f) with r
5* rR1(m;f)df and L5f/D2 (D being the mean leve
spacing! @12,13#,

]Rn

]L
5(

j

]2Rn

]r j
2 2b(

j Þk

]

]r j
S Rn

r j2r k
D2b(

j

]

]r j
E

2`

` Rn11

r j2r k
.

~29!

For n52 and small values ofr, the integral term makes
negligible contribution, thus leading to the following a
proximated closed-form equation forR2 :

]R2

]L
52

]2R2

]r 2 22b
]

]r

R2

r
. ~30!

Equations~27! and ~28! represent the formal solutions o
Eq. ~13! @or Eq.~22!#. To proceed further, one needs to kno
the eigenvalues and eigenfunctions ofĤ so as to expressP in
a compact form, but these are explicitly known only for t
b52 case@8#. This is because forb52 the interaction term
in Eqs. ~25! and ~26! drops out andP can explicitly be ob-
tained. For the CM model@Eq. ~25!#, it is given as follows
@4#:
P~m,fuH~f0!;b52!

}U D~m!

D~m0!
Udet@ f m~m i2m0 j ;f2f0!# i , j 51 . . .N ,

~31!

with f m(x2y;t)5exp$2@(xeV2t2y)/(e2V2t21)#%, and, for
the CS model@12#,

P~m,fuH~f0!;b52!

5
1

N!U D~m!

D~m0!
Udet@ f s~m i2m0 j ;f2f0!# i , j 51 . . .N ,

~32!

where f s(x)51/2p (k52`
` exp@2k2f1 ikx#.

Since we already knowP(m,f) and various correlations
for the WD case~for which f5t) starting from various
initial conditions@12,13#, one can obtain these measures
the GG case just by replacingf by its appropriate relation-
ship with t and the variances of the perturbation-matrix e
ments. For example, for the caseH5VV21 @which corre-
sponds toH(t→`) in Eq. ~1!# with different variances for
the different diagonals of V @Eq. ~17!#, f5
2(2V2)21 ln$) r 51

N (uyr21u)/yr #% @with d chosen to be
unity for the same reason as in Eq.~12!#. Also note that in
this case]P/]t50. The initial conditionf50 now corre-
sponds to allyr→`, thus implying the existence of only th
diagonal elements ofV and a Poisson distribution fo

P(m0 ,f50) (}e2V2a( iVii
2

with Vii 5m0i). As f→` when
yr→1 for all r, the equilibrium distribution is therefore give
by the standard Gaussian ensembles. This case thus c
sponds to the Poisson→ GE transition in the standard
Gaussian ensembles@12,13# with f now as a transition pa
rameter~replacingt, the perturbation strength! with interme-
diate ensembles representing the cases for any choice ofyr ’s.
The two-point correlations for this transition forV belonging
to the SG ensemble~complex-Hermitian! have already been
obtained@13#. It should be noted that, as for the SG e
sembles,f must be rescaled to see the smooth transit
@14#.

IV. POLYNOMIAL CASE

In Sec. II, we showed the equivalence of particle dyna
ics of the Wigner-Dyson gas with the evolution of the eige
values of a Hamiltonian under a perturbationV taken from
generalized Gaussian ensembles. However, the claim a
universality of the dynamics and level-density correlato
can only be made if the equivalence is proved, at least in
thermodynamic limit, for aV with distribution of a more
general nature. In this section, we attempt to verify the cla
by taking r(V) as the exponential of the polynomia
form of V, r(V)5C exp@2(k< lQ(Vkl)# with Q(x)
5( r 51

M gkl(r )x2r ~a polynomial ofx with degree 2M ), C as
the normalization constant~referred to as polynomial case
later on! and variances for the diagonal and off-diagonal m
trix elements chosen to be arbitrary. Note that the univer
ity of the correlators for the caseH5V, with V distributed as
in this case, has already been studied in Refs.@15,16# ~which
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corresponds to the steady-state limit of the study given he!.
To obtain a FP equation, we now need the followi

equality, which can be proved by using integration by pa

E f @V#Vklr~V!dVkl

5
1

2gkl~1!
E ] f @V#

]Vkl
r~V!dV

2(
r 52

k

r
gkl~r !

gkl~1!
E Vkl

~2r 21! f @V#r~V!dV. ~33!

By using the real symmetric analog of Eq.~A1! in Eq. ~3!,
followed by the above equality, we get

]P

]t
5V2(

n

]

]mn
~mnP!

2h21V(
n

]

]mn
E (

k< l

1

gkl~1!gkl

]

]Vkl

3F)
i

d~m i2l i !OnkOnlGr~V!dV

12h21V(
r 52

M

r(
n

]

]mn
E )

i
d~m i2l i !

3F(
k< l

gkl~r !

gkl~1!

Vkl
2r 21

gkl
OnkOnlGr~V!dV. ~34!

Now for simplification let us consider a case whe
gklgkl(r )5g(r ) if ( k5 l ) andgklgkl(r )5g8(r ) if ( kÞ l ).

Using the tools given in Appendix A and by an extensi
use of the integration by parts while dealing with difficu
integrals, the first term appearing in the above equation
now be reduced to the same form as in the GG case.
results in the following:

]P~$m i%,t!

]t
5V2(

n

]

]mn
~mnP!1

1

g8~1!
(

n

]

]mn

3F ]

]mn
1 (

mÞn

b

lm2ln
GP2Z, ~35!

whereb51 and

Z5
V2

h2 S 1

g~1!
2

1

g8~1!
D F2

V2

h2 (
r 52

k

r

3F g8~r !

g8~1!
Gr11

g~r !

g~1!
Gr2G ~36!

with F, Gr1 , andGr2 given as follows:

F5
1

2(n

]

]mn
E F(

k

]

]Vkk
S )

i
d~m i2l i !

]ln

]Vkk
gkkD G

3r~V!dV, ~37!
:

n
is

Gr15(
n

]

]mn
E )

i
d~m i2l i !F(

k, l

]ln

]Vkl
Vkl

2r 21Gr~V!dV,

~38!

Gr25(
n

]

]mn
E )

i
d~m i2l i !F(

k

]ln

]Vkk
Vkk

2r 21Gr~V!dV.

~39!

We apply partial integration toF and rewrite it as follows:

F5g~1!(
k
E )

i
d~m i2l i !F12g~1!Vkk

2

2(
r 52

M

rg~r !Vkk
2r Gr~V!dV1(

r 52

k

rg~r !Gr2 . ~40!

Similarly, Gr1 andGr2 can be rewritten as follows:

Gr15(
k, l

E )
i

d~m i2l i !F ~2r 21!Vkl
2r 2222g8~1!Vkl

2r

22(
s52

M

sg8~s!Vkl
2r 12s22Gr~V!dV, ~41!

Gr25(
k
E )

i
d~m i2l i !F ~2r 21!Vkk

2r 222g~1!Vkk
2r

2(
s52

M

sg~s!Vkk
2r 12s22Gr~V!dV. ~42!

For the complex Hermitian case also, one obtains
equation similar to Eq.~35! with b52 andZ given by Eq.
~36!. Note that all the terms appearing in the expressions
F, Gr1 , and Gr2 are of the type*) i(m i2l i)V

jr(V)dV,
and, as done in Sec. II for the GG case, they can easily
rewritten in terms of the derivatives with respect tog(r )’s if
j <2M . It is difficult to do so for terms withj .2M ; they
probably could be expressed as higher-order derivatives
respect to more than one variance parameter~this is the case
at least forN52). However, as physically significant RM
models of complex systems generally correspond to the l
N→`, it would be sufficient, for our purpose, to study th
behavior of the terms in this limit. As is obvious from Eq
~40!–~42!, the N or V dependence ofF, Gr1 , and Gr2 is
due to the presence ofl i ’s as well as the coefficients
g(r ), r 51→M . Let us consider the case where bothg(r )
and g(r 8), wherer 51→M , are independent ofN and all
the matrix elements ofV are distributed with zero mea
which implies theN independence ofr(V). Thus theN de-
pendence ofF, Gr1 , andGr2 in this case is of the same orde
as appears inP, which can clearly be seen by using th
equality d(l21@m#2V)5d(m2l@V#)detu]l/]Vu and re-
writing these integrals in terms of the functionl21(m).
Equation~36! therefore implies that the contribution fromZ
to Eq. ~35! is negligible~as compared to the diffusion term
and the drift term due to mutual repulsion! in the limit N
→`. Similarly for the GG case,Z vanishes forN→`; Z
here can be obtained by substitutingg(r )50, g8(r )50, for
r .1, in Eq. ~13!. Further, for the case where distributio
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although basis-independent, contains a non-Gaussian t
that is, for r(V)} exp@2a Tr(V2)2( r 52

M g(r )Tr(V2r)#
~polynomial caseII ), the Z can be shown to be the follow
ing:

Z5
2gV2

h2 (
r 52

k

rg~r !,

E )
i

d~m i2l i !F(
k,l

gk,l

]~V2r 21!kl

]Vkl
24a Tr~V2r !

24(
s52

k

Tr~V2r 12s22!Gr~V!dV→0, for N→`.

~43!

In the thermodynamic limit (N→`), Eq. ~35! is the same
as the FP equation governing the Brownian motion of p
ticles in Wigner-Dyson gas~also the Sutherland model! with
particle positions and time in the latter replaced bym i andt
in the former. This remains valid also for the case wh
Q(x) is chosen to be an arbitrary function expandable i
Taylor series. Thus we find that, under a perturbation ta
from an ensemble with a sufficiently general distribution, t
distribution of eigenvalues of the quantum system evolve
the same way as the distribution of particle position in
Wigner-Dyson gas for arbitrary initial conditions. This als
implies that all the moments of the eigenvalues calculated
a parameter valuet will be equal to the corresponding mo
ments of particle positions of the latter. But the motion
eigenvalues is not Brownian because the randomness in
motion comes from the matrixV which acts like quenched
disorder@9#.

This also implies the equivalence of second-order pa
metric correlators in the two cases in the thermodyna
limit because they can be expressed as a sum over va
moments of eigenvalues, weighted suitably and then a
aged over equilibrium initial conditions. However, the F
equation being Markovian in nature, its equivalence for
two cases cannot lead us to a similar conclusion for
higher-order correlators, which involve moments at mo
than one parameter value and therefore multiple param
averaging. As mentioned in@9#, the n-point correlations for
the Wigner-Dyson gas can be expressed in terms of the
point functions, yielding ann-matrix integral while for RM
models of quantum chaos, then-point function remains a
two-matrix integral.

It should be noted here that we have considered the
only for N-independent coefficients in the polynomial;
more careful analysis is required when these have differeN
dependence. For example, if one or more coefficients arN
dependent, increasing withN increasing, the contribution to
Eq. ~35! from terms in Eqs.~38!–~40! is no longer negligible
and therefore the evolution ofP is no longer the same as i
the Gaussian case.

V. CONCLUSION

In this paper, we have analytically studied the respons
energy levels of complex quantum systems to external
turbations modeled by generalized random matrix
rm,
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sembles. Our results indicate the universality of two-po
parametric density correlators as well as the static correla
of all orders, thus agreeing with the numerically observ
results for complex systems. One interesting feature reve
by our study is that for both the localized and the delocaliz
quantum dynamics of these systems, the second-order p
metric correlations can be shown to have the same form
cept that the definition of the effective parameter is differe
in the two cases. The method adopted here prohibits us f
making any statement about universality of the higher-or
parametric correlations.

Further, for the reasons given in Secs. I and IV, the c
respondence shown between the Wigner-Dyson gas and
quantum HamiltonianH5H01xV with V having a suffi-
ciently general nature also implies the equivalence betw
the space-time correlators of the Calogero-Sutherland sys
and the second-order parametric correlations ofH. This fur-
ther strengthens the idea contained in@1# and supported by
studies in@9#, namely, the 1D Sutherland model provides
model Hamiltonian for the dynamics of eigenvalues of qua
tum chaotic systems@10#. The equivalence shown betwee
the FP equation governing the evolution of eigenvalues
the GG and SG cases also turns out to be quite helpfu
studying the correlations for various difficult but physical
significant situations~depending on the variances of the pe
turbation matrix! in the former case, by using the techniqu
given in Sec. III. Note that our result is quite general as
have shown the equivalence for arbitrary choice of varianc
As already mentioned in Sec. II, the results obtained in Se
II, III, and IV are also valid for the level dynamics of unitar
operatorsU. Note that the analogy between the statistic
properties of nonequilibrium circular ensembles that mo
the eigenvalue spectra of unitary operators and nonequ
rium standard Gaussian ensembles has already been e
lished @12#.

Our study still leaves many important questions una
swered. For example, universality or its absence am
higher-order correlations of complex systems and their si
larities or differences with the Wigner-Dyson gas is not fu
understood. Further, the results here have been obtaine
explicit averaging over a generalized random perturbing
tential. It would be interesting to know whether similar co
clusions can also be obtained for the complex systems w
ensemble averaging is not valid~e.g., billiards! and eigen-
value statistics should be computed as an average over tN
eigenvalues. Intution suggests a positive answer, since s
ciently complex systems are quite likely to be self-averagi
This implies that a single choice of matrices from a partic
lar distribution are representative in the largeN limit of the
entire distribution and therefore an average over eigenva
should give the same result as an ensemble average.
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APPENDIX

For H a complex-Hermitian matrix, its eigenvalue equ
tion is given byL5UHU1 with L as eigenvalue matrix
and U the eigenvector matrix, which is unitary. Now for
complex Hermitian perturbationVi j 5Vi j ;11 iVi j ;25Vji*
~with Vii ;250), the rate of change of eigenvalues and eig
vectors, with respect to various components of matrix e
ments ofV, can be described as follows:

]ln

]t
52V2ln1

V

h (
i< j

1

gi j
@Vi j ;1~UniUn j* 1Un jUni* !

1 iVi j ;2~UniUn j* 2Un jUni* !#, ~A1!

where

]H

]t
52V2H1

VV

h
. ~A2!

Further,

]ln

]Vkl;1
5

h~t!

Vgkl
@UnkUnl* 1UnlUnk* #, ~A3!

]ln

]Vkl;2
5

h~t!

Vgkl
@UnkUnl* 2UnlUnk* # ~kÞ l !, ~A4!
v.

s

-

-
-

]ln

]Vkl;2
50 ~ if k5 l !, ~A5!

and

]Unp

]Vkl;1
5

2h~t!

Vgkl
(

mÞn

1

lm2ln
Ump~Umk* Unl1Uml* Unk!,

~A6!

]Unp

]Vkl;2
5

2h~t!

Vgkl
(

mÞn

1

lm2ln
Ump~Umk* Unl2Uml* Unk!

~A7!

and

(
k< l

F]~UnkUnl* 1UnlUnk* !

]Vkl;1
1 i

]~UnkUnl* 2UnlUnk* !

]Vkl;2
G

52
2h~t!

Vgkl
(

mÞn

1

ln2lm
. ~A8!

For the real-symmetric case, the corresponding relati
can be obtained by usingUi j 5Ui j* ~as the eigenvector matrix
is now real-orthogonal! in Eqs. ~A1!–~A8! and takingVi j ;2
50 for all values ofi , j ~also found in Ref.@9#!.
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