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Universal level dynamics of complex systems
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We study the evolution of the distribution of eigenvalues df>a N matrix subject to a random perturbation
drawn from (i) a generalized Gaussian ensemble énda non-Gaussian ensemble with a measure variable
under the change of basis. It turns out that, in d@sea redefiniton of the parameter governing the evolution
leads to a Fokker-Planck equation similar to the one obtained when the perturbation is taken from a standard
Gaussian ensemblwith invaraiant measujeThis equivalence can therefore help us to obtain the correlations
for various physically significant cases modeled by generalized Gaussian ensembles by using the already
known correlations for standard Gaussian ensembles. For haugdues, our results for both cas@sand (ii)
are similar to those obtained for the Wigner-Dyson gas as well as for the perturbation taken from a standard
Gaussian ensemble. This seems to suggest the independence of evolution, in the thermodynamic limit, from the
nature of perturbation involved as well as the initial conditions and therefore the universality of dynamics of
the eigenvalues of complex systerf$1063-651X99)04404-9

PACS numbgs): 05.45-a, 03.65.Sq, 05.46.a

I. INTRODUCTION ing over all perturbations from such an ensemble, we show
that, for large N, the probability density of eigenvalues

Many important physical properties of complex quantumevolves according to a Fokker-PlankP) equation similar
systems can be studied by analyzing the statistical response the one proposed by Dyson for the Wigner-Dyson [§ds
of eigenvalues to an external perturbatidn2]. It turns out  The strength of the perturbation acts here as a timelike coor-
that the evolution of the eigenvalues of the system as a fundinate. For finiteN, this analogy seems to survive only when
tion of the strength of the perturbation is universal but onlythe dynamics is considered as a function of the perturbation
after an appropriate normalization of the perturbing potentiaktrength as well as the variances of the matrix elements of
[1]. Various approches have beeen adopted for a better utihe perturbation.
derstanding of this phenomenon, e.g., nonlineanodel[3], The statistical response of eigenvalues to a changing per-
random matrix theoryRMT) [4], semiclassical techniques turbation was studied by Simons and co-worKédrsby using
[5], etc. Among these, a special class of Gaussian ensemblasdifferent approach, namely, the nonlinearmodel. By
of RMT have been used very successfully in modeling theconsidering a Hamiltoniahl = Hy+ xV with V as the pertur-
short energy-range behavior of eigenval(iés The prob- bation andx its strength, they explicitly calculate the auto-
ability density of a matrix in this ensemble depends only oncorrelation function of the energy eigenvalues for disordered
the functions invariant under change of basis, e.g., trace afystems within the so-called Gaussian approximafion
the matrix thus making it easier to calculate the eigenvalugero mode aproximation Other results pertain to the nu-
distribution. However, it has been conjectured that the locaimerical study of perturbed quantum chaotic systems, such as
statistical properties of a few eigenvalues of a random Herthe chaotic billiard with a varying magnetic flx]. As
mitian matrix are independent of the details of the distribu-shown in their work, the universality manifests itself among
tion of the matrix elements, apart from a few broad characthe density correlators only after the normalization of eigen-
terizations such as real symmetric versus complexalues\; by mean level spacing and that of perturbation by
Hermitian, etc(Chap. 1 of Ref[4]). Therefore, the success the root mean square ‘“velocity” of eigenvalues
of RMT in modeling the energy-level behavior of complex ((d\;/dx)?); the universality here implies the independence
systems should not be restricted only to the standard Gausef the correlators in the bulk of a system from system-
ian ensembles. dependent features. By treatizgas a timelike parameter,

In this analytical work, we study this conjecture by exam-they also conjectured the asymptotic correspondence of the
ining the dynamics of eigenvalues of a quantum Hamiltoniarparametric level-density correlators of quantum chaotic sys-
under a random perturbation belonging to a clasgipfs  tems with the corresponding time-dependent particle-density
general Gaussian ensemble &ingla non-Gaussian ensemble correlators for the ground-state dynamics of the Sutherland
with logarithm of the distribution given by a polynomial. In Hamiltonian[8]. The connection between the static correla-
both cases, the probability density of a matrix is chosen tdors (for a given parameter vali@nd the ground-state cor-
contain the basis-dependent functions and therefore is nlators(for a given time of the Sutherland system is already
longer invariant under the basis transformation. By integratwell known[1].

This correspondence was analytically shown in a recent
work by Narayan and Shastfg]. They studied the evolution
*Present address: Department of Physics, Indian Institute of Tectof the distribution of eigenvalues offdx N matrix H subject
nology, Kharagpur 721302, West Bengal, India. Electronic addres¢o a random perturbing matri¥ taken from a standard
Shukla@phy.iitkgp.ernet.in GaussianSG) ensemble and showed that it leads to the FP
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equation postulated by Dyson. Within this model, theystudying the symmetric Gaussian case. As showi9jhQ],
proved the equivalence between the space-time correlators tife proper form of FP equation can be achieved only after a
the ground-state dynamics of an integrable one-dimensiondlirther reparametrization, namelyr=—Q~2In cos(x)

(1D) interacting many-body quantum systéthe Calogero- and by studying the evolution in terms of This suggests to
Sutherland(CS) systenm} and the second order parametric us the use of the same parametrization for our case also,
correlations ofH. This analogy follows because the Dyson which gives

FP equation is equivalent, under a Wick rotation, to the

quantum mechanics of the Calogero model, which, in the H(r)=Hofh+VvhQ ™! €h)
thermodynamic limit, has bulk properties identical to those )
of the Sutherland systef®,10]. with h=\1-e 27 andfh=e .

Our present work extends this analogy further to a more Given an ensemble of the matric¥sdistributed with a
general model of Hamiltoniansl. We proceed as follows. probability densityp(V) in the Hermitian matrix space, let
For the clarification of our ideas, we first study, in Sec. Il, P(«,7) be the probability of finding eigenvaluas{ V] of H
the distribution of eigenvalueB(, 7) for an arbitrary initial ~ betweenu; and u;+dy; at “time” 7 for an arbitrarily cho-
conditionH, and the perturbatio taken from a generalized senH,, which can be expressed as follows:

Gaussian ensemblgater referred to as the GG caséVe N

obtain a partial differential equation governing its evolution,

which, after certain parametric redefinitions, turns out to be P(ui !T):f |];[l o(pi=Ni[VDp(V)dV. 2
formally the same as the Fokker-Planck equation governing

the evolution of the Wigner-DysoWD) gas. As the solu- Note here thaP(u,7) is in fact the conditional probability
tion of FP equation as well as various correlations in theP(u,r|uo) with o as the eigenvalue matrix di, but for
latter case are already known for many initial conditions, thissimplification we use the former notation. As thedepen-
helps us to obtaifP(u,7) as well as the correlations in the dence ofP in Eq. (2) enters only through;, a derivative of

GG case, as given in Sec. lll. Section IV deals with thep with respect tor can be written as follow§g10]:
evolution of eigenvalues under a more general perturbation.

We are motivated to study this case because the claim about IP(ui,7) N N

universality of the dynamics can only be made if the equiva- a7 A izlln o(pmi—N\j)

lence is proved, at least in the thermodynamic limit, fo¥ a

with distribution of a more general nature. We conclude in 38(n—Np) INg,

Sec. V, which is followed by an appendix containing the X p(V)dV. 3

PPET P o
proofs of some of the results used in this paper. . 7

The further treatment of the above equation depends on

Il. GENERALIZED GAUSSIAN CASE the symmetry classes of the matricksand H, that is,
whether they are real-symmetric or complex Hermitian.
Our interest is in the evolution of eigenvaluestblunder In the real-symmetric cas&)\,/dr can be expressed in

a random perturbatiok with initial stateH, as in Ref.[9]. terms of the matrix elements of the orthogonal mattix

Here the botiH, andV are Hermitian and can be assumed towhich diagonalize$!, H=0TAO with A as the eigenvalue
have same mean spacing without any loss of generality. Tmatrix (Appendix A). Using this in Eq.(3) leads to the fol-

ensure the same mean spacingHoalso, we need to modify lowing form with g, = (1+ &),

the parametrization of our perturbation strength

[9-11] from H(X)=Hy+xV to H(x)=Hgcos€x) P(ui,7) d " d
+VQ1sin@x) with Q< 1/y/N. SinceQ2— 0 for largeN, the ar =0 zn: &,un(’u“"P) 2h an: At
reparametrization of the perturbation strength is inconse-

quential for finitex. The distributiono(V) of matrix V is still f . ﬂ

chosen to be a Gaussign(V)=C exp(— 2y ayVZ) with X H O ui )")z‘. OniOni Oyl p(V)aV.

C as the normalization constant. So far we are in the same 4
situation as in Ref[9] but now we depart and allow the @
variances for diagonal and off-diagonal matrllx elements to  ap application of the partial integration on the second
be arbitrary(later referred to as the GG caamlike the SG term in the right of the above equation then gives

case where variance of the diagonal ones was twice that of

the off-diagonal ones. IP(wi,7) 5 d . d
As indicated in[9], the evolution of eigenvalues éfasa  ——;—— =02 3 (waP)—h72Q P
function ofx for any perturbatior can be expressed as a set n oHn n OHn
of first order differential equations. They turn out to be 9
analogous to the equations of motion of a classically inte- Xf & aata ﬁTm[H O(1i=Ni)OnkOn

grable system with B+ 8N(N—1)/2 degrees of freedom
(with 8 a symmetry-dependent parametén principle, the X p(V)dV. (5)
distribution of eigenvalues can be obtained from these equa-

tions and its evolution can be studied but the coupling be- For simplification let us assume the same variance for all
tween the equations makes such a method very difficultthe diagonal matrix elements such thgta,= a for k=1I.
Thus we adopt another approach, the one useld.0h for Now, by expressing 2y </(1/a Q) - =laZi -
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— Sl (Ua) — (/g a)] and with the help of real- universality of the dynamics, that is, to verifying tHatsat-
symmetric analog of relation#®\3)—(A8) as well as the par- isfies a FP equation similar to the one proposed by Dyson.

tial integration technique, we can reduce E%). as follows: Equation(7) contains the derivatives & with respect to
two parameters, namely, andy. In order to prove that the
IP(ui,7) 922 ( P)+ Q 2 2 s statistical quantities in the GG case evolve in a similar way
ar Apan Fon Ipn’m r9,um as in the SG case, one should be able to reduce the two-

parameter dependence of E@) to a single-parameter de-
INm pendence. We assume that it is possible along a curve pa-
XJ H op )\‘)z‘. {monkon.}p(wdv rametrized by, 7= 7(¢),y=y(¢) such that

1 f p(V) g dr 9 Iy 9
+— S dv Tt A
an, mEnsﬁm Ipen H (k= Am—Ap i d¢ a7 g ay’ (10
_hflﬂz (gutagt— a*l)E J A comparison of Eq(10) with Eq. (7) then leads us to the
= oK T n O conditions for existence of such a curve, namely/d¢
=1 anday/d¢p=[20%y(1—y)]/h?. By solving these equa-
f &Vk|(H S M)Onkom) p(V)dV. tions, one obtains the following curve in thg, ) space:
(6) eZer_l
Y= oo and 7=¢+ 79, (11
e~ "+,

By applying the orthogonality relation of matri®, Eq.

(6) can now be rewritten as follows: wherery andy, are arbitrary constants. Note that the condi-

P (i, 7) _ tions mentioned above do not impose any constraints on
P) these constants except that the curve should remain on the
positive side of the upper half gf = plane. The extraction of

7o from Eq. (11) leads to the following form ofb:

aT

B
é’:“*n m#n Mm™ Mn

423

P-F,
a n &Mn

1 ~1
$=1-55zn 1+d¥(emzf—l) . (12

where=1 and whered=y,/(y,— 1) and can be chosen as unigince the

corresponding value of still satisfies the required condi-
F=h"202>, (gk‘,lagl—a‘l)f IT 6(mi—n) tions). Thus, fory= '/ a, Eq.(11) represents a set of curves
k<l ' along which Eq/(7) adopts the form of a FP equation:

242
X[a—2ajViglp(V)dV. (8 P d) 22 .
Following similar steps and the appropriate relations aqs (’““ )
given in the Appendix, one obtains the same equation as in
the complex Hermitian caggvith 8=2). Further analysis of Z B p
Eg. (7) depends on the relative values of variances for the a n 0,un o7,un mEn Mm— Mn|

off-diagonal matrix elements. For a clear understanding, let
us first consider a case where all the off-diagonals have the
same variances, such thga, = a’ (for k#1). F can then
be expressed in terms of the derivativePofvith respect to
y=a'la:

(13

where the steady state is achieved & which corre-
sponds tor—~ and a—a’; the steady-state solution is
given by Hi<j|,ui—Mj|3e*(“’2)“22k“§. Note that only 7

—oo (with §P/d7=0) no longer represents the steady state
as in the SG or WD case but represents a transition state with
B(y)=—(1/20%)In[d(ly—1//y)].

Here we have used an idea quite important to our analysis The steady-state limit oP at (y,7)=(1,~) seems to in-
that the variances of the matrix elementsvotan also vary dicate that if the initial perturbation is such that the width
and therefore eigenvalues evolve not only as a function ofx«1/a) of the eigenfunctions o is smaller than the over-
the perturbation strength but of the variances too. Note hergpping between themo{1/a'), they have a tendency to
that F can also be expressed as an extra drift termovercome this difference and extend over all of the available
F==Z{[R(u) 1/ dmn}), with R=h‘192k§,(galak‘,1 Hilbert space. This also seems to suggest that a complicated
—a Y [{(3l Vi) [T1; (i — \i)) OniOn 1} p(V)dV and it can  interaction giving rise to larger transition probabilities be-
be of interest to study the effect of this extra drift on thetween energy levels as compared to the probability of staying
dynamics. For example, f& nonlinear inP, the motion may in the same level can only be transient in nature. Given the
lose its random behavior, showing some sort of periodicityfreedom to change, it rearranges itself in such a way as to
But in this paper, we restrict ourselves just to exploring theequalize these probabilities.

F=2h"2Q%(1- i 9
A=Yy 5o ©)
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Equation (13) is formally the same as the FP equation By expressing this in terms of the derivatives ®iwith
governing the Brownian motion of particles, in time, of the respect tax,a’ as before, we obtain a drift equatiomithout
Wigner-Dyson gas. However, in the former case, the transia diffusion term as well as the repulsive pairwise potential
tion parametekp is a function of both perturbation strength
and the relative variances of matrix elements. In the limit IP(ui,7) 5 J
N— o, this two-parameter dependencedbfreduces to one dq =4 = alun('“"P)' (16)

(lim N—o, ¢=17). This can also be seen directly from Eqs.

(7) and (8) because in the limiN—=, 1—0 andH—H,  where¢, describes a curve in a three-dimensiongla(, a")

+ 742V, thus removing any) dependence of; and mak- space such thatdP/d¢,=(IP/a7)+(2Q%h)[a’ (oP/

ing F—0. A same result for SG-type perturbation has al-ga')+ a(dP/da)]. The above possibility of reduction of the
ready been obtaing®]. The analogous behavior in both GG FP equation in a pure drift form, just by going to a higher
and SG case can be attributed to the negligible effect of thearametric space, implies the total blindness of eigenvalues
distribution of N-diagonal matrix elements on the dynamicsto any mutually repulsive potential or locally fluctuating
in the presence oN(N—1)/2 off-diagonal ones. This indi- force in this space. Note that it is already well known that a
cates that, in the thermodynamic limit, differences in therepulsion between the eigenvalues vanishes if the number of
variances do not affect the evolution of eigenvalues. parameters of the Hamiltonian undergoing variation is more

Again, in theN— o limit, all three distributions, namely, than one in the real-symmetric caéwo for the complex-
SG, GG, and WD, evolve in the same way for arbitrary ini- Hermitian casg[11]. However, the same situation seems to
tial conditions. Thus, all moments of the eigenvalues in SGoprevail even when the parameters undergoing variation are
and GG cases at any value of the transition parameter will bthe ones governing the distribution of matrix elements of
equal to the corresponding moments of particle positions of #amiltonians.

WD gas undergoing Brownian motion due to the presence of So far, we have considered the case where all the off-
thermal noise. However, as discussed 9, this does not diagonal matrix element¥;; have the same variance al-
imply a Brownian motion of eigenvalues for the first two though different from that of the diagonal. But in many
cases, the reason being the difference of sources randomizipgysical situations, e.g., in disordered systems, there occurs
the motion of eigenvalues. For SG and GG cases, the sourdecalization of eigenfunctions that may give rise to off-
is the matrixV, acting like a quenched disorder while, for the diagonal elements with different variances. One such situa-
WD gas, the thermal noise gives rise to an annealed randonion most often encountered is whevg's decay exponen-
ness. Although these different origins of randomness do naially with respect to the distance from the diagonal. It can be
affect the static(for one-parameter vallieor the second- modeled by taking different variances for the different off-
order parametric correlations, as shown in Ref, multiple  diagonals, that isg, ey =«, (r=|k—1|). F insuch a case
parametric correlations higher than the second order are difs given by, withy,=«, /«,

ferent for the perturbed systems and WD gas. However, the

origin of randomness being similar for the SG and GG cases, N JP

all the conclusions obtained for the correlations for the F=2h"202) (1_yr)yr0—,_- 17
former[9] are also valid for the latter in the thermodynamic r=1 Yr

limit.

We assume that it is possible along a curve parametrized

It is interesting to note that Eq¢4) can also be written in _yu) such that

the following form[by first using the real-symmetric analog by ¢, 7=7(¢).Y=Y(y1, ..
of Eq. (A3) in Eqg. (4) and then taking the derivative with 0 ard Y 9

respect t inside the integrdl = 4y
pect tou, grd Py a¢ﬁr+&¢>aY (18
MZQZZ J (1aP)+h~202> with 9/9Y=2,(ady,/3Y)(d/dy,). Reasoning again as before
ot n JHn k<l one finds that the universality of evolution of the probability

density still survives but only by going to a higher
T 8(mi—\) (N-dimensiongl parametric spacer(yq, - ..,yn), along a
XJ i Vp(V)dV.  (14) set of curves parametrized ly and given by the conditions
Ny, kIP ' (9719d)=1; (9YIdp)=2n"2Q2 with  (ay,/aY)=(1
—V,.)Y;. Again, ¢ can be obtained by solving these equa-
Now an application of the partial integration to the secondliOns:
term on the right-hand side of this equation gives

N <|Yr_1|

1
¢=T—W|n :I.‘f'dr

=1 r

(27— 1)}. (19)

f7l_il o(pi—Nj)
Vip(V)dVv Note here thatl, contains the contribution only from those
N y,'s for whichy,—1+0.
One can also consider a physical situation when all the
Zf [T 8(mi—ND[1+2ayVE1p(V)dV. off-diagonal matrix elements have different probability laws
! guay = a(for k=1) anda,# «;; if (kl#ij). In this caseF
(15 now turns out to be as follows with,= o,/ @:
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o P =Ugexdi7V]=Ug[1+i+/7V] for small 7 valueg. The re-
F=2h"°Q k2<| (1_ykl)ykIM- (200 quired FP equation in this case turns out to be the following:
IP(ui, ) 1 alad B Mm™ Mn
Now one has to go td[N(N—1)]/2}+ 1-dimensional ad :;; ey g_MJ’En;n cof —5 P,
parametric space to recover the FP equation similar to that of (22)

the Wigner-Dyson gas. The curves in this case are again

parametrized byp, which is still related tor andY by Eq.  with ¢ defined as before. To prove the equivalenceUoa

(18 but now Y=Y({yy}) is such that 9/gY  sSymmetric unitary matrix §=1), one has to follow steps

=<1y 1Y) (! similar to those in the real-symmetric case of Hermitian ma-

Y1) With gy, /dY=(1—yy) Y ; the two other derivatives trices, as both are invariant under orthogonal transformation.

of 7 andY with respect tap remain the same as in the above For a general unitary) (8=2), the steps are similar to the

case. Proceeding exactly as befoge,in this case can be complex Hermitian case. As is obious from Eg2), this is

shown to be the following: similar to the FP equation obtained\if belongs to the SG
ensemble$12].

N (lya—1]
14d]] (L
k<l Yk

=7 % In (€227 1)} 21) ll. CALCULATION OF = P(u,7) AND CORRELATIONS

In the preceding section, we obtained a FP equation gov-
, ) o erning the evolution of probability?(w,7) for an arbitrarily
Again, as before]l,., contains contributions from al,, given H(&,) (the conditional probability Here ¢, corre-

#1. We have discussed here very few of the various possgpondS to the case=0 and andH(¢,) can be obtained by

bilities one may encounter in complex systems. As mdmate%sing the relation H(d)= H(%)e,ﬂz(d,,%)

by the cases discussed above, the desired form of B). . 0% 50 o )

can only be obtained by an appropriate partitioning of thetVV1—e ®, substituting¢ in terms of 7 andy
sumse.g., as done near E¢§)], which leads to a separation there and then comparing it with the expression for the
of the contributions from terms with unequal variances fromHamiltonianH(7) given by Eq.(1). HereV is a matrix with
those with equal variances. The latter gives the required drifhn jnvariant probability distributiofm(\?)oce‘(“/Z)T’VZ] and
and diffusion terms while the former is absorbed in a paraj(4) can be written in the above forrfthe “SG form”)
metric derivative(given byF). Using the same techniqué,  since it gives the correct evolution equation for the probabil-
can be written for other cases too. ity distribution.

For the SG casep appearing in the correlators of the type ~ The formal similarity of the FP equation to that of the
(d(E,¢).d(E,0)) involves variation of just one parameter, WD gas case as well as the SG case makes it easier to obtain
for the CG case two parameters or more. However, in botlp (., 7) at least forB=2, since the solution of Eq13) [and
cases, the expressions of second-order correlators is the sam®)] for this 8 value is already knowfd,12). The P(u, ¢)
due to the analogous form of the FP equation. Our studyand thereforeP(u,)] can also be calculated directly from
therefore suggests that the second-order correlators involvinge HamiltoniarH (#) by using the sum of the matrices tech-
variation of more than one parameter can always be exyiguethat is, by evaluating a two-matrix integrais for the
pressed as those involving just one effective parameter. Fa§G case[4] because now both of the component matrices
example, the correlators belonging to the RM models of bothaye invariant distribution, unlike E¢l). For completeness,
localized as well as delocalized cases can be expressed in thg give here a few of the steps, used in solving the SG case,
same form by using parametgralthough the definition o for our case; for details, refer {d.2].
is different in the two cases. As can readily be checked, both Eq$3) and (22) can

Our study also suggests that the nature of the dynamics @fiso pe written as followéwith a=1 for simplification:
the eigenvalues is very sensitive to the number of parameters

undergoing a change. For finilé the motion may appear as AP(wi ) 9
pure drift, suggesting no interaction between eigenvalues and T = E a—IQNIﬁ— _—, (23
a total absence of local fluctuating and frictional forces if n Okn n
variances of all the matrix elements are allowed to vary in- 0?52
dependently. It seems to be Brownian as a function of justvhere [Qu[P=[A(u)[Pe™ =% with - A(u)=I1i<;(u
the relative variations of the variance. Under variation of ~ &) for the Hermitian case ande<k5'r[(M1_Mk)/2] for

only the perturbation parameter, the presence of an extr€ unitary case. The transformatign=P/|Qy|#* allows us
driftlike term makes the motion non-Brownian. But, the con-t0 cast Eq(23) in the suggestive form

tribution of this term being zero in thid— oo limit, it recov- P

ers its Brownian nature. It can be of interest to study the —Aw, (24)

effect of this extra drift on the dynamics. ﬁ_

Although the study presented here deals with the energy- - S
level dynamics of random matrix-models of Hermitian op-where, for the Hermitian case, the “Hamiltoniart turns
erators, e.g., the Hamiltonian of complex systems, the resul@ut to be the Calogero-Mos¢€M) Hamiltonian
are also valid for the level dynamics of unitary operatdrs

: - i P 1o BB-2) 0

e.g., the time-evolution operator being perturbed by a ran- |:|=2 - +—E Iwz_ (25)
dom matrix V taken from the GG ensemblegU(7) T ooud 205 (mi—up)? 4T
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Similarly, for the unitary caseH is the Calogero-Sutherland

Hamiltonian

H=-> —
Ei&:“fi
2
_ P N(N2—
2gN(N2=1).

B(B=2)

16 < Cosee(ﬂi_ﬂj)

(26)

With the parabolic-confining potenti@r periodic bound-
ary condition$ and under the requiremefto take into ac-
count the singularity irH) that the solutions vanish ag;

—,uj|ﬁ’2 when u; andu; are close to each othef, in both
Egs.(25) and(26), has well-definedcompletely symmetric
eigenstateg, and eigenvaluek, . This allows us to express
the “state” ¥ and thereforeP(u, ¢|Hy) as a sum over ei-
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P(u,¢[H(o);=2)

A(p)
A (o

deffm(lh Moj b= do)ij=1.. N

(31)

with f(x—y;t) = exp{ — [ (xe*'—y)/(e2**'—1)]}, and, for

the CS mode[12],
P(Mv¢|H(¢o);B:2)

(,u)

—Roj = do)ij=1. N
(32

wherefy(x)=1/27=;__exd —k2¢p+ikx].

genvalues and eigenfunctions iéf Since we already know(u,¢) and various correlations

Q (w) |P2 for the WD case(for which ¢=7) starting from various
P(u,d|H(po))= N initial conditions[12,13], one can obtain these measures for
n(#o) the GG case just by replacing by its appropriate relation-

ship with 7 and the variances of the perturbation-matrix ele-
ments. For example, for the caske=VQ ! [which corre-
sponds toH(7— =) in Eq. (1)] with different variances for
the different diagonals of V [Eq. (17)], o=
=202 In{I™_,(ly,—1|)/y,]} [with d chosen to be
unity for the same reason as in E42)]. Also note that in
this casedP/dr=0. The initial condition$=0 now corre-
sponds to ally,—oo, thus implying the existence of only the
diagonal elements oV and a Poisson distribution for
P(1o,6=0) (e~ Vi with V; = ;). As ¢p—o when
y,—1 for all r, the equilibrium distribution is therefore given
which further leads to the correlatiom&,(uq, ... .un;¢) by the standard Gaussian ensembles. This case thus corre-
={INU[(N=n)!"]fdpnsq .. . dunP(ua, ... ,un; ) using sponds to the Poisson» GE transition in the standard
standard techniqueg12,13. In fact, a direct integration Gaussian ensembl¢2,13 with ¢ now as a transition pa-
of the FP equation(13) leads to the Bogoliubov- rameterreplacingr, the perturbation strengtiwith interme-
Born-Green-Kirkwood-Yvon hierarchic relations among diate ensembles representing the cases for any choigésof
the unfolded correlators R,(rq, ... ,5;A)=limN  The two-point correlations for this transition forbelonging
—0[Ry(t1, « -t @) VR t1; ) .. .Ry(un; ) with r to the SG ensembleeomplex-Hermitiah have already been
=["Ry(u;¢)d¢ and A=¢/D? (D being the mean level obtained[13]. It should be noted that, as for the SG en-
spacing [12,13, sembles,¢ must be rescaled to see the smooth transition

xgo exf — N — do) 14k ) & (1e0),
27

where po=(po1,M02, - - - Mon) are the eigenvalues of
H(¢o). The joint probability distributiorP(u«,¢) can then
be obtained by integrating over all initial conditions,

P(M7¢):J P(M1¢|MOI¢O)P(M01¢O)d/’L01 (28)

[14].
IR, ’R,, d( R, d (* Rni1
A =2 —78 T —327 —
7oory fFk ATy T o) el =Ty IV. POLYNOMIAL CASE
(29

In Sec. I, we showed the equivalence of particle dynam-
Forn=2 and small values af, the integral term makes a ics of the Wigner-Dyson gas with the evolution of the eigen-
negligible contribution, thus leading to the following ap- values of a Hamiltonian under a perturbatidriaken from
proximated closed-form equation f&;: generalized Gaussian ensembles. However, the claim about
universality of the dynamics and level-density correlators
can only be made if the equivalence is proved, at least in the
thermodynamic limit, for av with distribution of a more
general nature. In this section, we attempt to verify the claim
Equations(27) and(28) represent the formal solutions of py taking p(V) as the exponential of the polynomial
Eq.(13) [or Eq.(22)]. To proceed further, one needs to know form of V, p(V)=Cexd —=,<,Q(Vy)] with Q(x)
the eigenvalues and eigenfunctionslibfso as to expresBin = E?":lym(r)xzr (a polynomial ofx with degree M), C as
a compact form, but these are explicitly known only for thethe normalization constartteferred to as polynomial case |
B=2 casg8]. This is because fog8=2 the interaction term later on and variances for the diagonal and off-diagonal ma-
in Egs.(25) and (26) drops out and® can explicitly be ob- trix elements chosen to be arbitrary. Note that the universal-
tained. For the CM moddlEq. (25)], it is given as follows ity of the correlators for the cas¢=V, with V distributed as
[4]: in this case, has already been studied in HéfS,16 (which

PR,
ar®

R,
A

op 0 Re 30
2B (30
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corresponds to the steady-state limit of the study given)here
To obtain a FP equation, we now need the following

equality, which can be proved by using integration by parts:

f fLVIVip(V)dV

If[V]

27k|(1)j Ny P p(V)aV
. 7k|(r) (2r 1)
= ' V(1) flVlp(VydV 33

By using the real symmetric analog of E&\1) in Eq. (3),
followed by the above equality, we get

1 d
k% Y (L) Gk f7Tk|

-h- 192

aﬂn

X H 5<Mi—xi>onkon.}p(wdv

M
0
+2h7 10> >, . JH (i~
r=2 n Mn i

X[E Ya(r) VGt

OnkOni |p(V)dV. (34

= vl gu

Now for simplification let us consider a case where
G vii(r) = y(r) if (k=1) and gy yi(r)=y'(r) if (k#1).

Using the tools given in Appendix A and by an extensive
use of the integration by parts while dealing with difficult

integrals, the first term appearing in the above equation Caﬁnd
now be reduced to the same form as in the GG case. Th'rsewrl

results in the following:

ﬁp({;:m =022, TE (mn
X 6’Zn 2 )\m’[_g)\n}P—Z, (35
whereg=1 and
- %2(%_ y'?l)) (f?;é r
e

with F, G,;, andG,, given as follows:

_z (7:U~n

Xp(V)dV,

P I\,
; m( H 5(Mi_7\i)mgkk”
(37
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G=2, —x-)_E& 23] (V)dv
LN |_k<| Ny M _P '
(38)
[ &)\” 2r—1-
Gro=2, (m [T otui=n| 2 G5 Vid " p(V)dV
n L J
(39

We apply partial integration tB and rewrite it as follows:

1—y(1)VE,

F-v03 [T stm-n)

k
p(V)dV+ gz ry(rG,.

M
- ;2 ry(r)V (40)

Similarly, G,; andG,, can be rewritten as follows:
rl_E f IT o(ui—np| (2r=1)VE =2y (D)V
M

—22 sy' (S)VA 2572 h(\V)dV, (41)

(2r—1)VZ 2= y(1)V&

Gro= 2, fH S pi—\;)

M
=2 sY(S)IVETE2p
s=2

(V)dV. (42)

For the complex Hermitian case also, one obtains an
equation similar to Eq(35) with =2 andZ given by Eq.
(36). Note that all the terms appearing in the expressions of
F, G,1, and G,, are of the type[II;(u;—\;)V!p(V)dV,
as done in Sec. Il for the GG case, they can easily be
tten in terms of the derivatives with respectyir)’s if
j<2M. It is difficult to do so for terms withh >2M; they
probably could be expressed as higher-order derivatives with
respect to more than one variance paramghes is the case
at least forN=2). However, as physically significant RM
models of complex systems generally correspond to the limit
N—oo, it would be sufficient, for our purpose, to study the
behavior of the terms in this limit. As is obvious from Egs.
(40)—(42), the N or 2 dependence oF, G,;, andG,, is
due to the presence of;'s as well as the coefficients
v(r), r=1—M. Let us consider the case where botfr)
and y(r'), wherer=1—M, are independent afl and all
the matrix elements oW are distributed with zero mean
which implies theN independence gf(V). Thus theN de-
pendence oF, G,;, andG,, in this case is of the same order
as appears iP, which can clearly be seen by using the
equality (N u]—V)=48(u—\[V])delor/oV| and re-
writing these integrals in terms of the function *(u).
Equation(36) therefore implies that the contribution frogh
to Eq. (35 is negligible(as compared to the diffusion term
and the drift term due to mutual repulsjoim the limit N
—oo. Similarly for the GG caseZ vanishes folN—o; Z
here can be obtained by substitutipr)=0, y'(r)=0, for
r>1, in Eq. (13). Further, for the case where distribution,
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although basis-independent, contains a non-Gaussian tersembles. Our results indicate the universality of two-point
that is, for p(V)xexgd—aTr(V?)— ErM=2y(r)Tr(V2r)] parametric density correlators as well as the static correlators
(polynomial casdl), theZ can be shown to be the follow- of all orders, thus agreeing with the numerically observed

ing: results for complex systems. One interesting feature revealed
by our study is that for both the localized and the delocalized
2 k .
7 2yQ E quantum dynamics of these systems, the second-order para-
- h? & ry(r), metric correlations can be shown to have the same form ex-

cept that the definition of the effective parameter is different
V2L, in the two cases. The method adopted here prohibits us from
2 gk"T_4a Tr(V?") making any statement about universality of the higher-order
kil ki parametric correlations.
Further, for the reasons given in Secs. | and IV, the cor-
p(V)dV—0, for N—oo, respondence shown between the Wigner-Dyson gas and the
guantum HamiltoniarH=Hy+xV with V having a suffi-
(43 ciently general nature also implies the equivalence between
the space-time correlators of the Calogero-Sutherland system
In the thermodynamic limitjl—), Eq.(35) is the same and the second-order parametric correlationsioThis fur-
as the FP equation governing the Brownian motion of parther strengthens the idea contained 1f and supported by
ticles in Wigner-Dyson gagalso the Sutherland modekith  studies in[9], namely, the 1D Sutherland model provides a
particle positions and time in the latter replaced/gyand7  model Hamiltonian for the dynamics of eigenvalues of quan-
in the former. This remains valid also for the case whereum chaotic systempl0]. The equivalence shown between
Q(x) is chosen to be an arbitrary function expandable in ahe FP equation governing the evolution of eigenvalues in
Taylor series. Thus we find that, under a perturbation takefhe GG and SG cases also turns out to be quite helpful in
from an ensemble with a sufficiently general distribution, thestudying the correlations for various difficult but physically
distribution of eigenvalues of the quantum system evolves isignificant situationgdepending on the variances of the per-
the same way as the distribution of particle position in theturbation matrix in the former case, by using the technique
Wigner-Dyson gas for arbitrary initial conditions. This also given in Sec. lll. Note that our result is quite general as we
implies that all the moments of the eigenvalues calculated fohave shown the equivalence for arbitrary choice of variances.
a parameter value will be equal to the corresponding mo- As already mentioned in Sec. Il, the results obtained in Secs.
ments of particle positions of the latter. But the motion of|l, IIl, and IV are also valid for the level dynamics of unitary
eigenvalues is not Brownian because the randomness in thaiperatorsU. Note that the analogy between the statistical
motion comes from the matri¥ which acts like quenched properties of nonequilibrium circular ensembles that model
disorder[9]. the eigenvalue spectra of unitary operators and nonequilib-
This also implies the equivalence of second-order pararium standard Gaussian ensembles has already been estab-
metric correlators in the two cases in the thermodynamidished[12].
limit because they can be expressed as a sum over various Our study still leaves many important guestions unan-
moments of eigenvalues, weighted suitably and then aveswered. For example, universality or its absence among
aged over equilibrium initial conditions. However, the FP higher-order correlations of complex systems and their simi-
equation being Markovian in nature, its equivalence for thdarities or differences with the Wigner-Dyson gas is not fully
two cases cannot lead us to a similar conclusion for theinderstood. Further, the results here have been obtained for
higher-order correlators, which involve moments at moreexplicit averaging over a generalized random perturbing po-
than one parameter value and therefore multiple parametegntial. It would be interesting to know whether similar con-
averaging. As mentioned if9], the n-point correlations for clusions can also be obtained for the complex systems where
the Wigner-Dyson gas can be expressed in terms of the twansemble averaging is not valig.g., billiard$ and eigen-
point functions, yielding am-matrix integral while for RM  value statistics should be computed as an average ové\ the
models of quantum chaos, threpoint function remains a eigenvalues. Intution suggests a positive answer, since suffi-
two-matrix integral. ciently complex systems are quite likely to be self-averaging.
It should be noted here that we have considered the caskhis implies that a single choice of matrices from a particu-
only for N-independent coefficients in the polynomial; a lar distribution are representative in the lafgdimit of the
more careful analysis is required when these have diffédent entire distribution and therefore an average over eigenvalues
dependence. For example, if one or more coefficientdNare should give the same result as an ensemble average.
dependent, increasing witkl increasing, the contribution to
Eq. (35 from terms in Eqs(38)—(40) is no longer negligible
and therefore the evolution &f is no longer the same as in ACKNOWLEDGMENTS
the Gaussian case.
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APPENDIX

. o =0 (if k=), (A5)
For H a complex-Hermitian matrix, its eigenvalue equa- avk. 2

tion is given byA=UHU™ with A as eigenvalue matrix,

and U the eigenvector matrix, which is unitary. Now for a and
complex Hermitian perturbationV;=Vjj.; +iVj;.,=Vj;

(with V;;.,=0), the rate of change of elgenvalues and eigen- Unp __ h(7)

vectors, with respect to various components of matrix ele- Vi1 Q0w mzn Am— A

Ump(U’r;kUnl'i'U:\;lUnk)v

ments ofV, can be described as follows: (AB)
Ny Ju —h(7)
——=- —2 = Vi (UniU2y+ Un Ut P _ Umg(U%Un—U%U
or I<] i] i, ni nj nj~ni aVk|;2 ngl = )\m_)\n mp( mk“ nl ml nk)
i A7
iV o(UnU% = U U1, (A1) (A7)
where and
oH QZH+VQ A2 D I(UnUg+UnUg k)+i‘9(UnkU:I_UnIU:k)
ar h - (A2) < A V2
Further, 2h(r) 1
=- . (A8)
ngl m#n )\n_)\m
INp h(r)
S [UnUn+UgUnd, (A3) , . .
Vi1 ng For the real-symmetric case, the corresponding relations
N h can be obtained by using;; = Ui’} (as the eigenvector matrix
IAn () — (U U —UnU%]  (k#1), (Ad) is now real-orthogonalin Egs.(A1)—(A8) and takingVj;.,
Naz Q0 =0 for all values ofi,j (also found in Ref[9]).
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